Optimized Rendezvous of a Quadrotor

ALEN GOLPASHIN

MIHIR PATEL

DAVID HANLEY

UNIVERSITY OF ILLINOIS

APRIL 26, 2016

Motivation

Source : Skycatch Inc.

Source : GRASP lab

Source : ETH Zurich

Source : A passive gripper mechanism .. [DeGol et. al]

- Assume perfect position sensing
- Disturbances present due to wind
- Uncertainty in attaining the desired velocity vector
- Path planner is needed to find desired position

Related Work and New Approach

Method Intuition:

• Desired velocity vector

• Other possible velocity vectors

Method Intuition:

Method Intuition:

Method Intuition: The Difference function

• We define a "Difference Angle", D: $\mathbb{R}^2 \rightarrow [0,\pi]$

Method Intuition: Difference Space Properties

• <u>Claim 1</u>: $\forall Z_0, \theta \rightarrow 90^\circ, D_\theta = \max \{D(Z_0, \theta)\}$. [Figure 1]

• <u>Claim 2</u>: If pairs (Z_1, θ_1) and (Z_2, θ_2) are such that $\theta_1 = \theta_2 = 90^\circ$ and $Z_c > Z_2 > Z_1$, then, $D_2 > D_1$ where $D_1 = D(Z_1, \theta_1)$ and $D_2 = D(Z_1, \theta_1)$. [Figure 2]

Objective Function

Difference angle increases the robustness, but in order to decrease the time to dock, we employ a new cost function assuming a constant velocity:

$$J = A\left(\frac{1}{D}\right) + B\|x_m - x_q\|$$

Method Intuition

Monte Carlo Experiments

Experiment I	Setup:
--------------	--------

Experiment I	c ₁ (0, 0.15)
PD Controller (Constant Gains)	3
Disturbance: Mean=0, Variance=0.001	
Constant Planner Gain	2
Docking region limit 0.01	-
Proposed method weights $(A = 1, B = 50)$	
Straight line method weights $(A = 0, B = 1)$	1-
Number of Monte Carlos runs : 1000	

a1 (0.95, 0.15)	a2 (0.95, 1)	a3 (0.95, 1.85)
<mark>b1</mark> (0.5, 0.15)	<mark>b</mark> 2 (0.5, 1)	<mark>b₃</mark> (0.5, 1.85)
<mark>c1</mark> (0, 0.15)	c ₂ (0, 1)	<mark>c₃</mark> (0, 1.85)

Monte Carlo Experiments

Exp	eriment II Setup:	a1 (0.95, 0.15)	a2 (0.95, 1)	a3 (0.95, 1.85)
I	1	b ₁ (0.5, 0.15)	<mark>b</mark> 2 (0.5, 1)	<mark>b</mark> ₃ (0.5, 1.85)
	Experiment II	c ₁ (0, 0.15)	c ₂ (0, 1)	<mark>c₃</mark> (0, 1.85)
			*	
	PD Controller (Constant Gains)	3—		
	Disturbance: Mean=0, Variance=0.01			
	Scheduled Planner Gain	2—	• • •	
	Docking region limit 0.043			
	Proposed method weights (A = 2, B = 50)	1		
	Straight line method ($A = 0, B = 50$)	Ţ		
	Number of Monte Carlo runs : 1000		a b c	
			7	

D

P

S

45

40

45

Future Work

- Simulations with other types of controllers
- Flight tests

