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Toaccount for torque disturbances and control trajectory error, amodel of a spacecraft attitude system is presented

that replicates uncertainty in the class of continuous low-thrust systems.Thegenerateduncertainty fromeach thruster

is modeled as a Gaussian white noise process, multiplicative in control. An optimal stochastic control law is derived

for precision pointing and three-axis stabilization. To derive the optimal control, a Hamilton–Jacobi–Bellman

equation is formulated, and a power series-based method is employed to approximate the optimal control. The

derived nonlinear control minimizes the objective function of the Lagrange problem in an infinite horizon setting.

Stability and existence conditions of control are provided. The nonlinear stochastic optimal controller is compared to

its deterministic counterpart for a 6U CubeSat model.

I. Introduction

T HE force and torque disturbances exerted on a spacecraft are
often divided into two categories: those that are not caused by

the spacecraft, and those that are results of the spacecraft’s operation
itself. The first group consists of the unwanted environmental torques
and forces caused by phenomena such as solar radiation pressure,
aerodynamic, and gravitational forces. In this paper, we focus on the
second group. Specifically, we are interested in modeling and miti-
gating thrust-induced disturbances of continuous low-thrust space-
craft attitude maneuvers. Mission constraints such as propellant and
power consumption, precision pointing, and actuator lifetime are
affected by unwanted effects of thrust fluctuations and hysteresis.
Moreover, torque disturbances and excessive force cycling could
jeopardize the structural integrity of the spacecraft if they exceed
any loading constraints.
In modeling thrust-induced disturbances, we deviate from the rather

traditional disturbance modeling and control practices. Instead, each
thruster’s disturbance is modeled as a Gaussian white noise process,
which ismultiplicative in the commanded force. That is, each thruster’s
uncertainty is modeled as a multiplicative noise, in which it becomes
the additive uncertain component of the generated total force. The
consideration of existing noise in thrust enables us to embed the
uncertainty information directly in the proposed control law. In this
manner, we formulate a stochastic optimal controller that adjusts its
behavior based on the best-known information on the severity of the
disturbance. In designs where on/off thrusters are used, this stochastic
controller can be implemented through use of pulse-width pulse-
frequencymodulation techniques. In the class of low-thrust propulsion
engines, thrusters operate for a long range of time continuously; thus,

the thrust fluctuations can be modeled as stochastic processes, as
proposed here.
Several studies have previously addressed actuator uncertainty. In an

influentialwork,McLane [1] derived the solutionof the linear regulator
problem for thrust-dependent noise in a physical system. Similarly,
in the study of stochastic Hill’s equations, Ostoja-Starzewski and
Longuski [2] modeled the thrust as an additive random process.
Gustafson [3] provided the numerical methods for the optimal feed-
back control of a linear spacecraft system with thrusters. Zhao and Jia
[4] investigated the attitude stabilization of a stochastic spacecraft
system under additive disturbance. Other experimental studies,
such as those by Nicolini et al. [5], have demonstrated the relation
of increasing commanded thrust level to that of decreasing thrust
accuracy.
In this work, spacecraft attitude dynamics are modeled as stochas-

tic differential equations (SDEs). For this model, we derive a sto-
chastic control law that takes into consideration the multiplicative
relation of increasing commanded thrust magnitude on the propa-
gated thrust uncertainty. We assume perfect knowledge of initial
conditions and state variables at all times. A Hamilton–Jacobi–
Bellman (HJB) equation is formulated, and its solution is approxi-
mated through a power series-basedmethod [6]. Since the solution to
theHJBequation involves the useof power series, the resulting optimal
control is local in nature. That is, itmay become suboptimal away from
the origin. Although, in the operational domain of state-space, the
derived control retains its approximate optimality and its stability
properties are desirable. To the best knowledge of the authors, there
are threewell-studied formulations of attitudedynamics.The first is the
use of the cascade structure as in Refs. [7,8]. The second method is
the Hamiltonian formulation, introduced in Ref. [9], where through
differentiating the kinematic differential equations, the dynamic and
kinematic equations are reformulated as a second-order differential
equation system. The third approach is that of adjoining the kinematic
and dynamic equations by constructing the state vector as an extension
of the kinematic parameters and the body rotational rates. When
working with singularity-free kinematic parameterizations, often, the
derivation of linear optimal control involves solving a state-dependent
Riccati equation (SDRE). In fact, SDREs can arise even when using
singular parameterizations; see Ref. [10]. In this paper, the combina-
tion of the power series-based method [6] and a singular kinematic
parameterization [11] gives an alternative to dealing with SDREs for
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nonlinear stochastic systems. Instead, we solve a form of algebraic
Riccati equation (ARE) to obtain the linear control, where its existence
(in a deterministic setting) relies on controllability properties of the
system. Furthermore, stability and performance in a cascade structure
depend on how fast the dynamics subsystem is. In addition, it must be
shown that the cascaded structure is stable through a choice of a
separate Lyapunov function. Using the third choice of state-space
formulationmentioned earlier in this paper, we are able to approximate
the HJB; hence, the stability of the closed-loop nonlinear system
follows in a neighborhood of the origin (see Theorem 2). The power
seriesmethod employed in thispaper allows the derivationand analysis
of each control order separately, thus giving the control designer a
choice in approximation.
The remainder of this paper is organized into five sections. The

stochastic modeling of the spacecraft attitude system is carried out in
Sec. II. The proofs of optimality, existence, and stability for both the
linear and nonlinear control are given in Sec. III. Section IV contains
the computed control expressions up to the third order. Higher-order
control expressions can be found in Appendix A. The simulation
results are tabulated and discussed in Sec. V. Finally, Sec. VI gives a
brief conclusion discussing the presented research.

II. System Disturbance Modeling

The spacecraft attitude system is described by the Euler rigid-body
equations with the addition of three or more differential equations
describing the orientation of the spacecraft with respect to a reference
frame. The dynamic equations are

I _ω � S�ω�Iω�M

S�ω� �
2
4 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

3
5 (1)

where I ∈ R3×3 is the principalmoment of inertiamatrix,ω ∈ R3×1 is
the angular velocity vector about the body principal axes, andM is the
total applied torque vector.
We will use the Tsiotras–Longuski parameterization [11] to

describe orientation. The rotation matrix R describes the orientation
of the body reference frame with respect to the inertial reference
frame. Matrix R is a result of two successive rotations: R �
R2�w�R1�z�. To be precise, the parameterizing matrices are given by

R1�z� �

2
664

cos�z� sin�z� 0

− sin�z� cos�z� 0

0 0 1

3
775;

R2�w� �
1

1�w2
1 �w2

2

2
664
1�w2

1 −w2
2 2w1w2 −2w2

2w1w2 1−w2
1 �w2

2 2w1

2w2 −2w1 1−w2
1 −w2

2

3
775

(2)

where z ∈ R is a rotation about the body z-axis, and w �
w1 � iw2 ∈ C gives the coordinates of a point in the complex plane.
Let the orientation of the z-axis of the reference frame resulting from
the rotation R1�z�, be described by the direction cosines �a; b; c� in
the body reference frame. Then, the mappingw:S2 \ �0; 0;−1� → C,

w � b − ia

1� c
is a stereographic projection describing the location of

the rotated z-axis in the body reference frame. A more descriptive
explanationwould be that of a complex plane cutting through the unit
sphere at the equator. Then, connecting a line from the south pole of
that sphere to the point �a; b; c� on the sphere, w is defined as the
intersection point of this line with the plane (see the figures in
Ref. [11]). Note that since R1�z�; R2�w� ∈ SO�3�, this parameter-
ization (like every three-dimensional parameterization) is singular.
The singularity occurs when w1, w2 → ∞, i.e., pointing toward the

south pole of the unit sphere. The evolution ofw, and z parameters is
given by the following differential equations [11]:

2
664

_w1

_w2

_z

3
775 �

2
66664

1

2
0 w2

0
1

2
−w1

−w2 w1 1

3
77775
2
664
ω1

ω2

ω3

3
775

�

2
666664

1

2
�w2

1 −w2
2� w1w2 0

w1w2

1

2
�−w2

1 �w2
2� 0

0 0 0

3
777775

2
664
ω1

ω2

ω3

3
775 (3)

The advantages of this parametrization are that the parameters
describing orientation are equal to the rigid body’s degrees of free-
dom. This reduces both nonlinearity and the dimension of the state
space. Moreover, differential equation (3) contributes a linear com-
ponent to the complete system [Eq. (14)], which is to be described in
the following. As a result, the complete system [Eq. (14)] can be
linearized about its defined state’s origin. Specifically, in our appli-
cation, we are interested in making an approximation to the optimal
control; hence, the structure of Eq. (3) allows a degree-by-degree
approximation starting from the linear control. Additionally, as
opposed to two possible singularities of Euler angles’ parametriza-
tion, the singularity is at a more desirable location.
Consider a single thruster’s force vector as shown in Fig. 1.

Assume that r � r1e1 � r2e2 � r3e3 is the vector from the center
of gravity (center of the body frame) to the thruster of interest.
Constant angles α and β are the thruster azimuth and elevation angles
[12]. Then, the generated torque from a single thruster is calculated as

τ � r × F � bF��

2
664

r2 cos�β� − r3 sin�α� sin�β�
r3 cos�α� sin�β� − r1 cos�β�

r1 sin�α� sin�β� − r2 cos�α� sin�β�

3
775F� (4)

whereF�is the scalar magnitude of the force generated by the thruster,
and the force vector F is

F �

2
664
F1

F2

F3

3
775 �

2
64
cos�α� sin�β�
sin�α� sin�β�

cos�β�

3
75F� (5)

Since thrusters are typically operated in pairs in attitudemaneuvers
[12], we assume that the spacecraft is equipped with multiple pairs
of bidirectional thrusters, numbered by the index i. For further

Fig. 1 Thruster force vector in spherical coordinates.
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simplification, we assume that each thruster pair is mounted sym-
metrically as shown in Fig. 2; hence, the vectors from the center of
mass of the spacecraft to each thruster are of equal length. LetMi be
the torque τ generated by the ith thruster pair. The forces due to
thrusters 1 and 2 of the ith pair are denoted by Fi1 and Fi2 , respec-

tively.
For instance, for the lever arms ri � ri1 � −ri2 , the generated

torque by the ith thruster pair is calculated as

τi � ri1 × Fi1 � ri2 × Fi2 � ri1 × �kFi1k � kFi2k�
Fi1

kFi1k

Let us denote expression

�kFi1k � kFi2k�
Fi1

kFi1k

by Fi, which is an equivalent net force resulting in the generated
torque by the ith thruster pair. Then, τi � ri × Fi is the torque
generated by the ith pair, and the total generated torque τ is the
summation of torques generated by all the thruster pairs. For m
thruster pairs, the torque vector is given by

τ �
Xm
i�1

τi �
Xm
i�1

biF�i (6)

where F�i � kFi1k � kFi2k is the scalar magnitude of the force

generated by the ith thruster pair, and bi is given by Eq. (4). Express-
ing Eq. (6) in state-space notation, the total exerted torque τ, is
equivalent to

τ �
Xm
i�1

biF
�

i �
Xm
i�1

biUi�t� � bU�t� (7)

whereU ∈ Rm is the control vector, and b:R3 → Rm is a real valued
3-by-m matrix. The columns of b, (namely, bi) give the orientation of
each thruster pair in terms of angles α and β. In fact, bi vectors are the
axes about which the corresponding control torques kbikUi are
applied [13]. We consider vectors bi to be time invariant by
assumption. The entries of vectorU, describe the generated net force
by each thruster pair. Substituting bU�t� as the generated momentM
in Eq. (1), the deterministic dynamic equations become

I _ω � S�ω�Iω� bU�t� (8)

In modeling thrust uncertainty, the main idea is to let generated
uncertainty from the ith thruster be modeled as a Gaussian white
noise process �ηt�i, where all the �ηt�i are independent. The uncer-
tainty due to a thruster pair can then be represented as

��ηt�1 � �ηt�2� � ξt (9)

where ξt is a Gaussianmean-zerowhite noise process. Then, we have
that

Ui�t� � ui�t��1� �ξt�i�; i � 1; : : : ;m (10)

and the control vector with multiplicative noise becomes

I−1bU�t� � I−1
Xm
i�1

bi�ui�t���1� �ξt�i� (11)

where u ∈ Rm is the nominal control vector. In general, ξt accounts
for uncertainty in control input, such as thrust magnitude variations.
As opposed to the additive noise model considered in Ref. [2], the
multiplicative uncertainty structure provides a more accurate and
realistic model where the magnitude of noise generated by the
thruster pair is dependent on the magnitude of the control input itself.
For instance, a small commanded nominal control u will result in
�ξu� ≈ 0 for an arbitrary ξ. Furthermore, it is known that for a
measurable function σ�u�t��,

Z
σ�u�t��ξt dt;

Z
σ�u�t�� dWt (12)

are statistically equivalent [14]. Hence, differential equation (8) is
statistically equivalent to

ωt�ωo�
Z

t

to

�I−1S�ωs�Iωs�I−1bu�s��ds�
Z

t

to

σ�u�t��dWt (13)

where Wt t ≥ 0 is the m -dimensional standard Brownian motion
on the probability space �Ω;F ;P�, and σ�:� denotes the diffusion
coefficient. Next, to adjoin the dynamic and kinematic equations
[Eqs. (8) and (3)], we define the state vector as x �
�ω1 ω2 ω3 w1 w2 z �T . Differentiating x, and letting ~I1 �
I2 − I3
I1

, ~I2 �
I3 − I1
I2

, and ~I3 �
I1 − I2
I3

, with Ii, i � 1; 2; 3 being the

entries of the principalmoment of inertiamatrix, the complete system
is described by the following SDE:

dx � �Ax� f�2��x� � f�3��x� � Bu�t��dt� σ�u�t��dWt (14)

where

A�

2
66666666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1

2
0 0 0 0 0

0
1

2
0 0 0 0

0 0 1 0 0 0

3
77777777777775
; f�2��x� �

2
66666666664

~I1x2x3

~I2x1x3

~I3x1x2
x3x5

−x3x4
−x1x5 � x2x4

3
77777777775
;

f�3��x� �

2
6666666666664

0

0

0

1

2
�x1x24 − x1x

2
5�� x2x4x5

1

2
�−x2x24 � x2x

2
5�� x1x4x5

0

3
7777777777775

and

B �
�
I−1b
03×m

�

The superscript in parentheses gives the order of the terms in state.
In the case of spacecraft thrusters with multiplicative noise, the
diffusion coefficient is a function of control and is given by

Fig. 2 Produced torque by a thruster pair.
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σ�u� �def εB

2
664
u1 0 0

0 . .
.

0

0 0 um

3
775 (15)

where ε ≥ 0 is a real parameter scaling the thruster uncertainty
effects. The diagonal form of the control matrix of Eq. (15) makes
sure that each entry of the m -dimensional Wiener process is associ-
ated with its respective input ui�t�, i � 1; : : : ;m .

III. Optimal Attitude Control

Having derived a model of the spacecraft attitude system, we are
now interested in finding a stochastic optimal control for the non-
linear constraint [Eq. (14)], which minimizes the expected cost
function

J �u� � Exo;to

�Z
∞

to

r�x; u� dt
�

(16)

in an infinite horizon setting, given the initial time to ≥ 0, and state
xo ∈ R6. At all times, the initial conditions are assumed to be known
with a probability of one. Let us define the running cost function
r:R6 × Rm → R, as

r�x; u� � 1

2
uTRu� r �x�

where x ∈ R6, u ∈ Rm , R ∈ Rm×m , R > 0,

r �x� �
Xm
i�2

r �i��x�

is a power series, andm is the order of the terms in x. Form � 2, the

regulator has the form r �x� � 1

2
xTQx, whereQ ∈ R6×6,Q ≥ 0. Let

P denote the probability measure generated by trajectories starting at
�xo; to�, driven by the Brownian motion W. Then, Exo;to is an

expected value with respect to the probability measure P.
Consider the following HJB equation associated with nonlinear

SDE (14):

min
u
fLuV�x� � r�x; u�g � 0 (17)

LuV�x� �
X6
i�1

fi�x; u�
∂V�x�
∂xi

� 1

2

X6
i�1

X6
j�1

ai;j�u�
∂2V�x�
∂xi∂xj

(18)

Here, a�u� ∈ R6×6, ai;j�u� � �σ�u�σ�u�T�i;j, σ is defined by
Eq. (15), and

f�x; u� � Ax� f�2��x� � f�3��x� � Bu�t�

The superscript u denotes the dependency of the infinitesimal gen-
erator [Eq. (18)] on control. The solution to HJB (17) is the value
function (minimum cost) V�x�:R6×1 → R. We are interested in
finding approximations of the optimal value function, and conse-
quently of the optimal control in the ring of formal power series over
R. The following theorem gives the optimality conditions of control.
Theorem 1: Suppose a form of V�x� and u�x� have been found. If

V�x� and u�x� satisfy conditions i–iii, then the control u � u�x� is
optimal and will minimize functional (16) in infinite time.
i) The Lyapunov function V�x�, satisfies the asymptotic stability

conditions of Lyapunov’s second method for stochastic dynamical
systems (see Remark 2).
ii) Given closed-loop system (14), V�x� satisfies the equation

LuV�x� � −r�x; u�x��, where Lu�:� is the infinitesimal generator
of diffusion (18).

iii) The Hamiltonian

H�x; κ; V�x�� � f�x; κ�T ∂V�x�
∂x

� 1

2
trace

�
a�κ� ∂

2V�x�
∂x2

�
� r�x; κ�

is strictly convex in κ, and attains its minimum at κ � u.
Proof: To show that the preceding assertion holds, we follow the

general steps of theorem 1.1 in Ref. [6] for stochastic dynamics. Let
u�x� be the optimal control. Then, from condition ii, it follows that

V�xo� � Exo;to

�Z
t

to

r�xs; u�xs�� ds� V�xt�
�

(19)

Set to � 0 and let t → ∞. By assumption, condition i of asymp-
totic stability applies so that for t → ∞, V�xt� → 0. Thus, Eq. (19)
becomes

V�xo� � Exo;to

�Z
∞

to�0

r�xs; u�xs�� ds
�

(20)

Next, assume that u�x� is not optimal. That is, there exists some
u��x� such that

Exo;to

�Z
∞

to�0

r�xs; u��xs�� ds
�
< Exo;to

�Z
∞

to�0

r�xs; u�xs�� ds
�

(21)

From condition iii, we have

H�x; u�; V�x�� > H�x; u; V�x�� (22)

Integrating Eq. (22) with respect to time, the inequality becomes

Z
t

to

Lu�V�xs��
Z

t

to

r�x;u��ds−
�Z

t

to

LuV�xs�ds�
Z

t

to

r�x;u�ds
�
>0

⇒Exo;to

�Z
t

to

Lu�V�xs��
Z

t

to

r�x;u��ds
�

−Exo;to

�Z
t

to

LuV�xs�ds�
Z

t

to

r�x;u�ds
�
>0 (23)

Applying the Itô lemma [15] to V�x�, we obtain the expression

V�xt�−V�xo�

�Exo;to

�Z
t

to

Lu�V�xs�ds�
Z

t

to

�
∂V�xs�
∂x

�
T

σ�u��xs��dWs

�
(24)

Substituting expression (24) in inequality (23) for both processes
driven by u� and u, we obtain

V�xu�t � − V�xo� � Exo;to

�Z
t

to

r�x; u�� ds
�

−
�
V�xut � − V�x0� � Exo;to

�Z
t

to

r�x; u� ds
��

> 0 (25)

Similarly, set to � 0 and let t → ∞. By condition i, Eq. (25)
becomes

Exo;to

�Z
∞

to�0

r�x; u�� ds
�
> Exo;to

�Z
∞

to�0

r�x; u� ds
�

(26)

which is a contradiction, proving that u is optimal if conditions i, ii,
and iii are satisfied. □
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In the succeeding sections, conditions of existence and stability of
different orders of optimal control are discussed. First, for simplicity,
we shall introduce some notation. Let H:R6 → R6×6 be a diagonal
second-order differential function defined as

H�V� �

2
6666666666666666666664

∂2V
∂x21

0 0 0 0 0

0
∂2V
∂x22

0 0 0 0

0 0
∂2V
∂x23

0 0 0

0 0 0
∂2V
∂x24

0 0

0 0 0 0
∂2V
∂x25

0

0 0 0 0 0
∂2V
∂x26

3
7777777777777777777775

(27)

then inspecting the noise term of HJB (17), assuming a diagonal

matrix I−1b, we have that

1

2

X6
i�1

X6
j�1

ai;j�u�
∂2 V�x�
∂xi∂xj

� 1

2
trace

�
σ�u�σ�u�T ∂

2 V�x�
∂x2

�

⇒
X6
i�1

X6
j�1

ai;j�u�
∂2 V�x�
∂xi∂xj

� ε2uTBTH�V�x��Bu (28)

Conditions of Theorem 1 imply that u�x� and V�x� resulting from
HJB (17) are optimal. It remains now to find approximations of such
solutions in the form of a truncated series for a choice ofm ≥ 2. To do
so, suppose u�x� and V�x� are the optimal solutions of Eq. (17).
Substituting u�x� and V�x� back in Eq. (17), we obtain Hamiltonian
(29). Additionally, differentiating Eq. (29) with respect to u, control
equation (30) is obtained:

�Ax� f�2��x� � f�3��x��T ∂V�x�
∂x

� �Bu�T ∂V�x�
∂x

� 1

2
ε2uTBTH�V�x��Bu� 1

2
uTRu� r �x� � 0 (29)

BT ∂V�x�
∂x

� Ru� ε2BTH�V�x��Bu � 0 (30)

Note that Eqs. (29) and (30) form a system of equations in which
their solutions are the assumed optimal control and optimal value
function. Following Al’brekht’s method of approximation [6], we
assume that V�x� and u�x� possess a power series form of

V�x� � V�2��x� � V�3��x� � V�4��x� � V�5��x� � V�6��x�
� V�7��x� � : : : � V�m��x� (31)

u�x� � k�1��x� � k�2��x� � k�3��x� � k�4��x� � k�5��x�
� k�6� � : : : � k�m−1��x� (32)

where m ≥ 2 is the order of the term in x and k�1��x� � Kx, with
linear optimal gain K ∈ M3×6�R�.
Proposition 1: Given the dynamical system [Eq. (14)], linear

control

k�1��x� � Kx � −�R� ε2BTH�V�2��x��B�−1BTPx (33)

asymptotically stabilizes the linear dynamics in probability, and
is optimal with respect to the quadratic Hamiltonian, if there
exists a positive definite Hermitian matrix P ∈ M6�R� satisfying

the quadratic expansion of Eq. (29); that is, if the following two
conditions hold simultaneously:
i) The pair �A;B� satisfies the Kalman rank condition and, for

Q � CTC, the pair �C;A� is detectable.
ii)

sup

����� Π1�16×6�
2�λ1 � λ2�

����;
���� Π2�16×6�
2�λ3 � λ4�

����;
���� Π3�16×6�
2�λ5 � λ6�

����;
���� 2λ1λ2Π1�16×6�

λ1 � λ2

����;���� 2λ3λ4Π2�16×6�
λ3 � λ4

����;
���� λ5λ6Π3�16×6�

2�λ5 � λ6�

����
�
< 1

where λi, i � 1; : : : ; 6, are the eigenvalues of A� BK,

Πj�16×6� �
ε2B4

j

R2
j � ε2B2

jRj

j � 1; 2; 3, and Bj; Rj ∈ R are the jth nonzero entries of matrices B
and diagonal R, respectively.
Proof: To argue the existence of stabilizing linear control, we will

use a series of existing results on existence and uniqueness of
Lyapunov function (31) in association with Eq. (17) form � 2. First,
consider the linear part of the attitude dynamics [Eq. (14)]:

dxt � �Axt � Bk�1��x��dt� σ�k�1��x��dWt (34)

Suppose there exists, in a neighborhood of the originX ⊆ R6, a twice
differentiable positive definite function V�x�, such that

lim
x→0

V�x� � 0

Then, if LuV�x� < 0 in X , the trajectories of linear SDE (34),
starting withinX , approach the trivial solution and the trivial solution
is asymptotically stable in probability byKhasminskii’s corollary 5.1
[16]. Hence, if there exists a positive definite Hermitian matrix P ∈

M6�R� such that the Lyapunov function V�2��x� � 1

2
xTPx decreases

along the trajectories of Eq. (34), then linear SDE (34) is asymptoti-
cally stable in probability. Certainly, if P is positive definite, then

V�2��x� is positive definite. Under the condition of optimality of

control form � 2, negative definiteness ofLuV�2��x� is guaranteed if

LuV�2��x� � −r�x; k�1��x�� (35)

for x in X . The equality Eq. (35) is in fact the quadratic terms of

Hamiltonian (29). Applying the generator [Eq. (18)] on V�2��x�,
substituting for the linear dynamics [Eq. (34)] and the quadratic
running cost, we have

�Ax� Bk�1��x��T ∂V
2�x�
∂x

� 1

2
ε2k�1��x�TBTH�V2�x��Bk�1��x�

� −
1

2
xTQx − k�1��x�TRk�1��x� (36)

Simplifying Hamiltonian (36), the following algebraic Riccati
equation is obtained:

xT �Q� PA� ATP� 2PBK� KT�R� ε2BT ~PB�K�x � 0 (37)

The linear control

k�1��x� � −�R� ε2BT ~PB�−1�B�TPx

is then computed through differentiating Eq. (36) with respect to
control. This is equivalent to solving for linear terms of Eq. (30).
Substituting for K, we obtain

Q� PA� ATP − PB�R� ε2BTH�V2�x��B�−1�PB�T � 0 (38)
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For a linear deterministic system, Eq. (38) will have the form

Q� PA� ATP − PBR−1�PB�T � 0

For such a system, stabilizability of the pair �A;B� is a sufficient
condition for existence of matrix P (see theorem 3 in Ref. [17]).
However, ARE (38) of the stochastic dynamics [Eq. (34)] requires
additional consideration. Due to Wonham ([18] theorem 4.1), we
have that the following form of the ARE

Q� PA� ATP − PBR−1�PB�T � Π�P� � 0 (39)

admits at least one positive semidefinite solutionP, if, forQ � CTC,
the pair �C; A� is detectable; and �A; B� is stabilizable, such that

inf
K

				
Z

∞

0

e�A�BK�T tΠ�16×6�e�A�BK�t dt
				
∞
< 1 (40)

where Π:M6�R� → M6�R� is a linear map from the space of sym-
metric matrices onto itself, and k:k∞ denotes the spectral norm. In
addition, if �C;A� is observable, thenP is positive definite and unique
[18]. The difference between ARE (39) and a deterministic Riccati is
the term Π�P�, and bound (40) implies that Π�P� is not too large.
SupposeK� is the gain yielding the smallest spectral norm, and let

Ko be the optimal gain. IfK� � Ko, then bounding the spectral norm
by Ko satisfies bound (40). Now, suppose K� ≠ Ko. If the spectral
norm due to Ko is bounded above by one, then surely the spectral
norm due to K� is also bounded by one. Here, we set K � Ko and
seek conditions where bound (40) holds for the optimal gain satisfy-
ing Eq. (37). Doing so of course yields a stronger condition, enabling
us to find closed-form expressions guaranteeing bound (40) to be
satisfied.
Now, consider ARE (38). Applying the Woodbury identity on

�R� ε2BTH�V2�x��B�−1, we rewrite Eq. (38) in the general form
of Eq. (39), where

Π�P�� ε2PB�R−1BT�H�V�2��P;x��−1� ε2BR−1BT�−1BR−1��PB�T
(41)

and hence condition (40) applies as an existence condition of ARE
(38). Note that the norm of bound (40) is the largest singular value of
its argument. Define

T �def
Z

∞

0

e�A�BK�T tΠ�16×6�e�A�BK�t dt

Then,
		T 		∞ � �λmax�T �T ��1∕2, where λmax denotes the largest

eigenvalue, and T � is the conjugate transpose of T . The integral of
Eq. (40) converges if all the eigenvalues of A� BK are real and
negative. Such a requirement can be satisfied given the controllability
of the system. Computing the convergent integral, we obtain

T �

2
66666666666666666666664

−
Π1�16×6�
2�λ1 � λ2�

0 0 0 0 0

0 −
Π2�16×6�
2�λ3 � λ4�

0 0 0 0

0 0 −
Π3�16×6�
2�λ5 � λ6�

0 0 0

0 0 0 −
2λ1λ2Π1�16×6�

λ1 � λ2
0 0

0 0 0 0 −
2λ3λ4Π2�16×6�

λ3 � λ4
0

0 0 0 0 0 −
λ5λ6Π3�16×6�
2�λ5 � λ6�

3
77777777777777777777775

(42)

where λ1; : : : ; λ6 are the eigenvalues of A� BK, and Πj�16×6�,
j � 1; 2; 3, are the nonzero entries of Π�16×6�. Since T has con-
verged to a symmetric matrix, we have that kT k∞ � jλmax�T �j. It
then follows that bounding the absolute value of all the eigenvalues of
T by one implies kT k∞ < 1.
To conclude, given that matrices A and B satisfy the Kalman rank

condition (and that forQ � CTC, matricesC andA are detectable such
thatkT k∞ < 1), then there exists a positive definiteHermitianmatrixP
satisfying ARE (39). This in turn implies the existence of a quadratic
Lyapunov function satisfying equality (35), and therefore asymptotic
stability of the dynamical system [Eq. (34)] in probability. □

Proposition 2: Let L1 ≡ ��A� BK�x�T ∂
∂x

and L2≡
1

2
ε2�BKx��BKx�TH be linear operatorsL1; L2:R

6 → R. If the mini-

mum eigenvalue ofL1 acting onV
�m��x� is greater than themaximum

eigenvalue ofL2 inmagnitude, and the linear deterministic part of the
dynamics [Eq. (14)] is asymptotically stable, then the nonlinear

stochastic control for m > 2 exists in some Xm ⊂ R6 containing
the origin and is given by

k�m−1��x� � −�R� ε2BTH�V�2��x��B�−1

×

"
�B�T ∂V

�m��x�
∂x

�
Xm−1

i�2

ε2 BTH�V�i�1��x��B k�m−i��x�
#

(43)

Proof:To show the existence of higher-order control, solvability of
Lyapunov function (31) form > 2must be shown. To do so,we study

the invertibility of the linear operator mapping V�m��x� to a poly-
nomial of the same order. As the series-basedmethod [6] has allowed
us, we inspect the linear operator acting on V�x�, order by order. Let
us first derive expression of these linear operators form > 2. To do so,
we substitute series (31) and (32) into Hamiltonian (29). This expan-
sion is given by

�Ax�T ∂V
�m��x�
∂x

� f�2�T �x� ∂V
�m−1��x�
∂x

� f�3�T �x� ∂V
�m−2��x�
∂x

�
Xm
j�2

�Bk�m−j�1��T ∂V
�j��x�
∂x

� �2 − δα 0β 0 �
2

�k�α 0 ��x��TRk�β 0��x�

� �2 − δαβ�
2

�k�α��x��T�ε2BTH�V�γ��x��B�k�β��x� � −r �m��x�
(44)

for α� γ � β � m − 2, and α 0 � β 0 � m, where α; γ; β; α 0; β 0 ∈ N,
and δij is the Kronecker delta (δij � 1, when i � j, and δij � 0

otherwise). Similarly, we substitute expansions (31) and (32) in the
optimal control [Eq. (30)]. Grouping, rearranging, and solving for
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every control order k�m−1��x� separately, the nonlinear control, as a
function of V�m��x�, becomes as given by Eq. (43), ∀ m > 2. Then,
to solve the system [Eqs. (29) and (30)], we substitute the expressions
of optimal control [Eq. (43)] back into Hamiltonians [Eq. (44)]
to arrive at m − 1 equations with m − 1 unkowns: one unknown
per equation. For j � 3; 4; : : : ; m − 1, the solution of equation
j − 1 is an input to equation j. In particular, we substitute for

�Bk�m−j�1��T ∂V
�j��x�
∂x

, j � 2; 3; 4; : : : ; m − 1, in every mth-order

Hamiltonian equation resulting from Eq. (44). To construct these
terms, let us rewrite Eq. (43) as

�B�T ∂V
�m��x�
∂x

� −�R� ε2BTH�V�2��x��B�k�m−1��x�

−
Xm−1

i�2

ε2 BTH�V�i�1��x��B k�m−i��x� (45)

Then, multiplying by �k�m−j�1��T, j � 2; 3; 4; : : : ; m − 1, we obtain
the modified control expressions

�k�m−j�1��T ∂V
�j��x�
∂x

�−�k�m−j�1��T�R�ε2BTH�V�2��x��B�k�j−1��x�

− �k�m−j�1��T
Xj−1
i�2

ε2 BTH�V�i�1��x��Bk�j−i��x�

(46)

for j � 2; 3; 4; : : : ; m − 1. Substituting Eq. (46) in every mth-order
Hamiltonian and carrying out cancellations, we arrive at m − 1
equations of themth order, which are the expansion of Eq. (29). This
system of equations is summarized by

��A�BK�x�T ∂V
�m��x�
∂x

�1

2
�Kx�T�ε2BTH�V�m��x��B��Kx��Ψ�m��x�

(47)

where Ψ�m��x� is the summation of all the polynomials of order m
with a known form. Notice that V�m��x� is the only unknown of this
equation. To determine the existence of coefficients of V�m��x� that
would satisfy Eq. (47), let us define the linear operatorL acting on an
arbitrary function θ�x� as

Lθ�x�≡��A�BK�x�T ∂θ�x�
∂x

�1

2
�Kx�T�ε2BTH�θ�x��B��Kx� (48)

where θ:R6 → R is a twice differentiable arbitrary polynomial func-

tion. We would like to determine if Ψ�m��x� are in the image of the
mapping L: θ�x� → L�θ�x��. To do so, we consider the conditions of
nonresonance [19] of homological equation (47). This is of course
equivalent to invertibility of the linear operator L, i.e., being able to

compute V�m��x� � L−1Ψ�m��x�. We shall show this by considering
the eigenvalues of the operators. However, observing that L θ�x� �
�L1 � L2�θ�x�, we treat the invertibility of each linearmapL1 andL2

separately, and will thereafter prove the invertibility of L. This is
because, given Eq. (14), eigenvalues of A� BK and BK are not
identical.
Let �νi; λi�, i � 1; : : : ; 6, denote a left eigenvector of the matrix

A� BK ∈ R6×6, and the corresponding eigenvalue. A polynomial in

x, θ�m��x� can be represented in the basis

θ�m��x� � hl1; xihl2; xi : : : hlm; xi (49)

where li ∈ R6, i � 1; : : : ; m, are arbitrary vectors; and h:; :i denotes
a dot product operation [20]. As the base case, let m � 3. Since, for
system (14), A� BK has a full set of linearly independent eigenvec-

tors, any polynomial θ�3��x� in the basis of the eigenvectors of
A� BK, is given by

θ�3��x� �
X6

i;j;k�1

c�3�ijkθ
�3�
ijk�x� (50)

where

θ�3�ijk�x� � hνi; xihνj; xihνk; xi

and c�3�ijk ∈ R is a constant for i; j; k � 1; : : : ; 6. If

Lp θ�3�ijk�x� � s �3�ijkθ
�3�
ijk�x�

for p � 1; 2 and some s ijk, then we conclude that s ijk is the ijkth

eigenvalue of Lp.

Consider the first-order additive portion of the operator L1, acting

on a basis function of θ�3�ijk�x�. We have that

L1θ
�3�
ijk�x� � xT�A� BK�T∂∕∂x
hνi; xihνj; xihνk; xi�

⇒ L1θ
�3�
ijk�x� � xT�A� BK�T
�νi�Thνj; xihνk; xi

� �νj�Thνi; xihνk; xi � �νk�Thνi; xihνj; xi� (51)

Using the relation νi�A� BK� � λiνi, for i � 1; : : : ; 6, we make
the following substitutions:

L1θ
�3�
ijk�x��xT �λiνihνj;xihνk;xi�λjνjhνi;xihνk;xi�λkνkhνi;xihνj;xi�

⇒L1θ
�3�
ijk�x�� �λihνi;xihνj;xihνk;xi�λjhνi;xihνj;xihνk;xi

�λkhνi;xihνj;xihνk;xi�
⇒L1θ

�3�
ijk�x���λi�λj�λk�θ�3�ijk�x� (52)

Now, let �~νi; ~λi�, i � 1; : : : ; 6, denote a left eigenvector of the

matrix BK ∈ R6×6, and corresponding eigenvalue. For system (14),
BK also has a full set of eigenvectors. As the continuation of the base
case, consider the second-order portion of operator (48),L2, acting on

a basis of θ�3�ijk�x�. We have that

L2θ
�3�
ijk�x��

ε2

2
xT�BK�TH�h~νi;xih~νj;xih~νk;xi��BK�x

⇒L2θ
�3�
ijk�x��

ε2

2
xT�BK�T
�~νi ~νj� ~νj ~νi�h~νk;xi

��~νi ~νk� ~νk ~νi�h~νj;xi��~νj ~νk� ~νk ~νj�h~νi;xi��BK�x
⇒L2θ

�3�
ijk�x��

ε2

2
xT
h
2
�
~νi ~λi ~λj�~νj�Th~νk;xi� ~νi ~λi ~λk�~νk�Th~νj;xi

� ~νj ~λj�~λk�T ~νkh~νi;xi
i

x

⇒L2θ
�3�
ijk�x��ε2

�
~λi ~λj� ~λi ~λk� ~λj ~λk


h~νi;xih~νj;xih~νk;xi (53)

Hence, the linear operators L1 and L2 acting on θ�3�ijk�x�, have
eigenvalues λi � λj � λk, and ε2

�
~λi ~λj � ~λi ~λk � ~λj ~λk

�
, respectively,

for i; j; k ∈ f1; : : : ; 6g when m � 3.
Next, let us assume that form � k, and k ≥ 3,L1 and L2 acting on

the basis θ�k�n 1 : : : n k�x� are given by expressions

L1θ
�k�
n 1 : : : n k�x� �

 Xk
r�1

λn r

!Yk
r�1

hνn r ; xi (54)

L2θ
�k�
n 1 : : : n k�x� � ε2

 Xk−1
i�1

Xk
j>i

~λn i ~λn j

!Yk
p�1

h~νnp ; xi (55)
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respectively, for n 1; : : : ; nm ∈ f1; : : : ; 6g. Specifically,

θ�k�n 1 : : : n k�x� �
Yk
r�1

hνn r ; xi

in the basis of eigenvectors of A� BK, and

θ�k�n 1 : : : n k �x� �
Yk
p�1

h~νnp ; xi

in the basis of eigenvectors of BK. Then, to compute the inductive
step, let m � k� 1. Applying L1 on the eigenfunction of order
k� 1, we have

L1θ
�k�1�
n 1 : : : n k�1

�x� � L1

0
BB@hν

n q ; xi
Yk�1

r � 1

r ≠ q

hνn r ; xi
1
CCA

⇒ L1θ
�k�
n 1 : : : n k�x� � xT�A� BK�Tνn q

Yk�1

r � 1

r ≠ q

hνn r ; xi

� hνn q ; xiL1

Yk�1

r � 1

r ≠ q

hνn r ; xi (56)

Using assumption (54) in Eq. (56), and realizing that
��A� BK�x�Tνn q � λn q hνn q ; xi, we obtain

L1θ
�k�
n 1 : : : n k �x� � λn q hνn q ; xi

Yk�1

r � 1

r ≠ q

hνn r ; xi

� hνn q ; xi

0
BB@
Xk�1

r � 1

r ≠ q

λn r

1
CCA Yk�1

r � 1

r ≠ q

hνn r ; xi

⇒ L1θ
�k�
n 1 : : : n k �x� �

 Xk�1

r�1

λn r

!Yk�1

r�1

hνn r ; xi (57)

Continuing the inductive step, we now apply L2 on the eigenfunc-
tion of order k� 1:

L2θ
�k�
n 1 :::n k�x�

�L2

�
h~νn k�1 ;xi

Yk
p�1

h~νnp ;xi
�

⇒L2θ
�k�
n 1 :::n k �x��ε2xT�BK�T ~νn k�1

×
Xk
q�1

0
BBB@�~ν

n q�TBKx
Yk
p�1

p≠q

h~νnp ;xi
1
CCCA�h~νn k�1 ;xiL2

Yk
p�1

h~νnp ;xi (58)

Applying the assumption [Eq. (55)] to Eq. (58), and again sub-
stituting using the eigenvector equation, we obtain

L2θ
�k�
n 1 :::n k

�x�

�ε2 ~λn k�1h~νn k�1 ;xi

0
BBBBB@
Xk
q�1

~λn q h~νn q ;xi
Yk
p�1

p≠q

h~νnp ;xi

1
CCCCCA

�ε2

 Xk−1
i�1

Xk
j>i

~λn i ~λn j

!
h~νn k�1 ;xi

Yk
p�1

h~νnp ;xi

⇒L2θ
�k�
n 1 :::n k �x��ε2

Xk
q�1

�
~λn k�1 ~λn q

Yk�1

p�1

h~νnp ;xi

�ε2

 Xk−1
i�1

Xk
j>i

~λn i ~λn j

!Y
h

k�1

p�1

~νnp ;xi

⇒L2θ
�k�
n 1 :::n k �x��ε2

 Xk
q�1

�~λn k�1 ~λn q��
Xk−1
i�1

Xk
j>i

~λn i ~λn j

!Y
h

k�1

p�1

~νnp ;xi

⇒L2θ
�k�
n 1 :::n k �x��ε2

 Xk
i�1

Xk�1

j>i

~λn i ~λn j

!Yk�1

p�1

h~νnp ;xi (59)

Hence, the eigenvalues of the linear operatorsL1 andL2 form > 2
are given by the expressions

Xm
r�1

λn r (60)

ε2
Xm−1

i�1

Xm
j>i

~λn i ~λn j (61)

respectively. Therefore, the linear mappings L1 and L2 are each
invertible if eigenvalues (60) and (61) are nonresonant. It can be
computed that the eigenvalues of A� BK and BK are real and
negative due to stability of the linear controller, hence the operators
L1 andL2 are both invertible. It remains to show thatL � L1 � L2 is
invertible as a result. Notice that �L1 � L2�−1 � L−1

1 �1� L2L
−1
1 �−1,

where L1 is already shown to be invertible. We have that
�1� L2L

−1
1 �−1 is invertible if kL2L

−1
1 k∞ < 1, where k:k∞ denotes

the spectral norm as before [21]. Since

kL2L
−1
1 k∞ ≤ kL2k∞kL−1

1 k∞ ≤ kL2k∞�1 − k1 − L1k∞�−1 (62)

holds, showing that kL2k∞�1 − k1 − L1k∞�−1 < 1will guarantee the
invertibility ofL1 � L2. Having already computed the spectral norms
of L1 and L2,

kL2k∞�1 − k1 − L1k∞�−1 < 1

⇒ max

�����ε2
Xm−1

i�1

Xm
j>i

~λn i ~λn j

����� < 1 −max

�����
 
1 −

Xm
r�1

λn r

!�����
⇒
�� ~Λ�m�

max

�� < ��Λ�m�
min

�� (63)

where Λ�m�
min is the minimum eigenvalue of L1 and ~Λ�m�

max is the
maximum eigenvalue of L2 in magnitude. Hence, we have shown
the invertibility of L, and, as a result, the existence of nonlinear
control for m > 2 when the linear deterministic part of the closed-
loop system is asymptotically stable and the minimum eigenvalue of

L1 acting onV
�m��x� is greater than themaximum eigenvalue ofL2 in

magnitude. □

Remark 1:The deterministic analogue of Proposition 2was shown
by Lyapunov in 1892 (see theorem 1 in Ref. [22] chapter 2, pages 71–
79; or theorem 1 in Ref. [23] part 21, pages 57–58). Similar to SDE
(14), in a deterministic setting, the existence of the higher-order
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Lyapunov function is guaranteed by stability of the linear dynamics.
Specifically, if a differential equation of the form _x � Mi1x1�
Mi2x2 � : : : �Minxn, i � n, for an arbitrary n > 0, has eigenvalues
that do not have a relation of the form c1λ1 � c2λ2 � : : :�
cnλn � 0, for a given positive integer c � c1 � c2 � : : : � cn,
where ci are nonnegative constants, then there exists a polynomial
V�x� of order m, satisfying the equation

Xn
i�1

�Mi1x1 �Mi2x2 � : : : �Minxn�
∂V�m��x�

∂xi
� Ψ�m��x�

where Ψ�m��x� is the known polynomial sum of the same order. In
fact, this is the same condition shown in Proposition 2 when the first-

order linear operator is applied to V�m��x�.
We may now assume that existence conditions of Propositions 1

and 2 are satisfied. Although, one may want to consider the con-
ditions of stability for the complete system [Eq. (14)] with a nonlinear
control. Studying the stability in this sense will provide the region of
attraction of the �m − 1�th-order control, i.e., forwhich set inX ⊂ R6,

the �m − 1�th-order control asymptotically stabilizes the system. We
state the following classical theorem without proof. The results are
pertaining to a continuous time-variant SDE but are general enough
to apply to the case of SDE (14).
Theorem 2 [24]: Consider a generalization of SDE (14):

dxt � f�t; xt�dt� σ�t; xt�dWt, t ≥ to, where f�t; x� ∈ Rn is an
arbitrary drift function, dim�x� � n. Assume that this SDE satisfies
the existence and uniqueness conditions [24], and has continuous
coefficients in t. Let us further define a time-dependent counterpart of
the infinitesimal generator:

L � ∂
∂t

�
Xn
i�1

fi�t; x�
∂
∂xi

� 1

2

Xn
i�1

Xn
j�1

ai;j�t; x�
∂2

∂xi∂xj

Suppose there exists a positive definite functionV�t; x� defined on
�to;∞� × X , where X � fx: jxj < hg, h > 0. Let such a function be
twice differentiable in x, and differentiable in t. Then, if

LV�t; x� < −CV�t; x� (64)

for some arbitrary constantC > 0,LV�t; x� is negative definite. As a
result, the trivial solution of the SDE is asymptotically stable in
probability.
Remark 2: In this paper, given the form of SDE (14), we have

assumed that the preliminary existence and uniqueness conditions are
satisfied. Moreover, we have shown the existence of a Lyapunov
function of order m. It must also be pointed out that for V�x� to be

positive definite onX ⊂ R6, V�t; x� > 0, t� → ∞, ∀ x ∈ X \ f0g is a
sufficient condition. Furthermore, if the condition LV�t; x� <
−CV�t; x� holds on the local setX , then system (14) is asymptotically
stable in probability, where X is the region of attraction for a mth-
order control. A refined version of Theorem 2 as stated in Ref. [25],
specifies that if C1�jxj� ≤ V�x; t� ≤ C2�jxj� and L�x� ≤ −C3�jxj�,
are satisfied for strictly increasing continuous functions C1, C2, and
C3, and radially unbounded functions C1 and C2, such that
Ci�0� � 0, and i � 1; 2; 3, then the trivial solution of the SDE is
asymptotically stable. For the case of the complete power series
[Eq. (31)], since we have that ∀ x ≠ 0,

LuV�x� � −r�x� < 0 (65)

V�x� > 0 (66)

where Lu is given by Eq. (18), with argument u as the solution to
Eq. (30), the conditions of asymptotic stability are satisfied ∀ x ∈ X
where inequalities (65) and (66) hold.

IV. Computation of Control

To compute the nonlinear control, we use Eq. (43) along with
Eq. (44). Here, we will demonstrate the computation of the optimal
stochastic control up to cubic order (and up to sextic order in
Appendix A). Every order of control will have unknowns that come
fromHamiltonians with one order higher than that of the control. We
begin by expanding and simplifying Eq. (30) for m − 1 � 1; : : : ; 6.
The control expressions are

k�1��x��Kx�−�R�ε2BTH�V�2��x��B�−1
�
�B�T ∂V

�2��x�
∂x

�
(67)

k�2��x� � −�R� ε2BTH�V�2��x��B�−1

×
�
�B�T ∂V

�3��x�
∂x

� ε2BTH�V�3��x��BKx
�

(68)

k�3��x� �−�R� ε2BTH�V�2��x��B�−1
�
�B�T ∂V

�4��x�
∂x

� ε2BTH�V�3��x��Bk�2��x�� ε2BTH�V�4��x��BKx
�

(69)

To find the unknown V�x� terms, we solve for every V�m��x�
through system (29), (30). Specifically, since we have arbitrarily
solved up to sixth-order control, we require the value function
[Eq. (31)] to be known for m � 7. Hence, we expand Eq. (44) for
m � 2; 3; : : : ; 7. The quadratic through quartic Hamiltonian expan-
sions become

�Ax�T ∂V
�2��x�
∂x

� �BKx�T ∂V
�2��x�
∂x

� 1

2
�Kx�TRKx

� 1

2
ε2�Kx�TBTH�V�2��x��BKx� 1

2
xTQx � 0 (70)

�Ax�T ∂V
�3��x�
∂x

� f�2�T �x� ∂V
�2��x�
∂x

� �BKx�T ∂V
�3��x�
∂x

� �Bk�2��x��T ∂V
�2��x�
∂x

� 1

2
ε2�Kx�TBTH�V�3��x��BKx

� �Kx�T�R� ε2BTH�V�2��x��B�k�2��x� � r �3��x� � 0 (71)

�Ax�T ∂V
�4��x�
∂x

� f�2�T �x�∂V
�3��x�
∂x

�f�3�T �x�∂V
�2��x�
∂x

��BKx�T ∂V
�4��x�
∂x

��Bk�2��x��T ∂V
�3��x�
∂x

��Bk�3��x��T ∂V
�2��x�
∂x

� 1

2
ε2�Kx�TBTH�V�4��x��BKx

� 1

2
�k�2��x��T�R� ε2BTH�V2�x��B�k�2��x�

� ε2�Kx�TBTH�V�3��x��Bk�2��x�
� �Kx�T�R� ε2BTH�V2�x��B�k�3��x�� r �4��x� � 0 (72)

Orders quintic through septic are listed in Appendix A. Note that
in Eqs. (70–72) and (A4–A6), the expansions are in terms of lower

orders of known control forms. To solve forV�m��x�, we substitute the
resulting terms of Eq. (46) into every mth-order Hamiltonian. Reor-
dering, grouping, and simplifying expressions based on their orderm,
we obtain the quadratic through quartic simplified Hamiltonians as

xT�P�ATP�x−xT�PB��R�ε2BTH�V�2��x��B�−1�PB�Tx�−xTQx

(73)

�Ax�T ∂V
�3��x�
∂x

� f�2�T �x�Px� xTKTBT ∂V
�3��x�
∂x

� 1

2
ε2�Kx�TBTH�V�3��x��BKx� r �3��x� � 0 (74)
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�Ax�T ∂V
�4��x�
∂x

�f�2�T �x�∂V
�3��x�
∂x

�f�3�T �x�Px��BKx�T ∂V
�4��x�
∂x

� 1

2
ε2�Kx�TBTH�V�4��x��B�Kx�

−
1

2
�k�2��x��T�R� ε2BTH�V�2��x��B�k�2��x�� r �4��x� � 0 (75)

Remark 3: Hamiltonian (73) is Riccati (38) discussed in Proposi-
tion 1. There are established numerical methods (i.e., see the work of
Rami and Zhou [26]) that approximate the solutionP of Eq. (38). For
instance, the YALMIP optimization toolbox in MATLAB is a useful
tool for implementation of the linear matrix inequality method.
Although, for the particular case of system (14), the Riccati equation
is solvable without the use of these methods. To do so, we assume a
tridiagonal form of the solution matrixP and control matrixQ. Then,
the solution to Eq. (38) will reduce to the problem of root finding of
nine equations.

V. Simulations

The specific model of interest is a 6U CubeSat (6 University-class
spacecraft in a 2-by-3 configuration) with three thruster pairs. The
standard dimensions of a 6U CubeSat are 10 × 20 × 30 cm, and the
maximum mass is 6 kg. As a result, the entries of the moment of
inertia tensor in principal axes (in units of kilograms per squaremeter)
are calculated as I1 � 0.05, I2 � 0.065, and I3 � 0.025. We further
set bT1 � �1 0 0 �, bT2 � �0 1 0 �, and bT3 � �0 0 1 �. The Monte
Carlo experiment in the following compares the stochastic nonlinear
controller with quadratic cost criteria to a linear quadratic regulator
(LQR) controller using MATLAB’s built-in function, and then
it compares it to the deterministic nonlinear controller by setting
ε � 0 in the equations of control. Following the numerical experi-
ments of Ref. [3], which considered the thrust variations of 10–20%
inspired by experimental propulsion studies, all the controllers in
this paper are testedwith uncertainty, having standard deviations of 1,
10, and 20% from the nominal thrust. We study the rest-to-rest
maneuvers with a nonlinear and stochastic controller using two
different constant gain choices: gain set A) a conservative choice of
gains where the strong condition ii of Proposition 1 is satisfied, and
gain set B) an aggressive control gain choice where the strong
condition ii of Proposition 1 is not satisfied.
Gain set A is as follows:

Q�

2
666666666664

1.17 0 0 0.7 0 0

0 1.14 0 0 0.8 0

0 0 1.3 0 0 0.5

0.7 0 0 0.35 0 0

0 0.8 0 0 0.4 0

0 0 0.5 0 0 0.6

3
777777777775
; R�

2
664
223.8 0 0

0 135 0

0 0 489.8

3
775

yielding a Riccati solution of

P �

2
666666666664

0.9591 0 0 0.4463 0 0

0 0.9699 0 0 0.4817 0

0 0 0.8257 0 0 0.4343

0.4463 0 0 0.1043 0 0

0 0.4817 0 0 0.0108 0

0 0 0.4343 0 0 0.6407

3
777777777775

for ε � 0.1. Similarly, gain set B constants are

Q �

2
666666666664

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

3
777777777775
; R �

2
664
0.1 0 0

0 0.1 0

0 0 0.1

3
775

yielding a Riccati solution of

P �

2
666666666664

0.0219 0 0 0.0217 0 0

0 0.0266 0 0 0.0262 0

0 0 0.0147 0 0 0.0145

0.0217 0 0 0.0215 0 0

0 0.0262 0 0 0.0261 0

0 0 0.0145 0 0 0.0144

3
777777777775

for ε � 0.1. The Riccati solutions for all noise variations for both sets
A and B are given in Appendix B. Notice that effort has been made to
keep the entries of the optimal solutionmatrix bounded above by one.
This is because the nonlinearity (i.e., order of the entries ofP), grows
as the order of the control equations increases, contributing to the
radius of attraction shrinking. In extreme cases, noise may cause the
state trajectories to exit the region of attraction, contributing to loss of
stability.
The singular values of gain set A are relatively closer to each other

than the singular values computed for gain set B. It is also clear from
Table 1 that the spectral norm increases with the variance of noise,
which is proportional to ε2. It must be pointed out that tuning gains in
a manner to bound both kT k∞ and all the entries ofP by one is rather
difficult. However, when accomplished, it is observed that condition
ii of Proposition 1 results in similar behaviors of stochastic and
deterministic controllers, as tabulated on the right portions of
Tables 2–4. The simulations are carried out for 2000 particles during
a rest-to-rest maneuver starting from x � � 0 0 0 1 1 1 �T
and stabilizing at x � � 0 0 0 0 0 0 �T .
Comparing the stochastic controller to the LQR, every order of the

nonlinear controller outperforms the conventional LQR controller by
minimizing the total cost. Generally, as the order of the nonlinear
control increases, the percent improvement in cost optimization
compared to the LQR controller increases as well. Few exceptions
to this trend are present due to numerical error in computation of
the control. On the other hand, comparison of stochastic and deter-
ministic nonlinear controllers of all orders reveals significantly smaller
improvements due to the choice of gain set A. Given a controller
K, the spectral norm [Eq. (40)] quantifies the total energy/variance
of noise due to application of K over time. If a controller satisfies
condition ii of Proposition 1, then the variance of the controller
becomes narrowly bounded, hence contributing to the small difference
between stochastic and deterministic nonlinear controls satisfying
the condition. However, as the difference between the spectral norms
corresponding to stochastic and deterministic controls increases, so
does the improvement due to the stochastic controller.

Table 1 Comparison of kT k∞ of stochastic and

deterministic controllers varying ε

ε � 0.01 ε � 0.1 ε � 0.2

Spectral norms gain set A

Stochastic 0.0003 0.0272 0.0985
Deterministic 0.001 0.098 0.3579

Spectral norms gain set B

Stochastic 4884.37 7837.75 7663.75
Deterministic 4961.84 8012.92 8050.42
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The following simulation results tabulated in Tables 5–7 are using
gain set B, which violates condition ii of Proposition 1.
Simulations of gain set B also demonstrate how increasing ε leads

to a greater difference between the total optimized cost in comparison
of the stochastic and the LQR controllers in Tables 5–7. Furthermore,
it is shown that nonlinear stochastic control optimizes the total cost
better as its order is increased. Since the gains are more aggressive
(i.e., leading to larger control constant values), and the spectral norms

tabulated in Table 1 are larger, we see a greater difference between
the total cost optimized in comparison with the nonlinear stochastic
and deterministic controllers. This, in fact, can be attributed to the
multiplicative nature of control uncertainty, where larger thrust
contributes to higher variations in thrust. This difference is then
amplified as the noise standard deviation is increased, as shown in
Tables 5–7. The main results of Tables 2–7 are summarized as bar
charts in Fig. 3.

Table 2 Mean cost comparison of stochastic controller to LQR and deterministic nonlinear controllers for ε � 0.01 using gain set A

Control order
Stochastic
control cost

Stochastic
state cost Total cost

Improvement compared
to LQR, %

Deterministic
control cost

Deterministic
state cost Total cost

Improvement compared
to deterministic, %

LQR —— — — —— 0.0000 0.3221 0.5060 0.8280 ——

Linear 0.3220 0.5060 0.8280 0.0012 0.3221 0.5061 0.8282 0.0228
Quadratic 0.3575 0.3769 0.7344 11.3019 0.3576 0.3770 0.7346 0.0252
Cubic 0.2932 0.4341 0.7272 12.1711 0.2933 0.4341 0.7274 0.0253
Quartic 0.2686 0.4547 0.7233 12.6451 0.2683 0.4554 0.7237 0.0560
Quintic 0.2931 0.4301 0.7232 12.6566 0.2933 0.4302 0.7235 0.0370
Sextic 0.3117 0.4117 0.7235 12.6284 0.3118 0.4118 0.7236 0.0147

Table 3 Mean cost comparison of stochastic controller to LQR and deterministic nonlinear controllers for ε � 0.1 using gain set A

Control order
Stochastic
control cost

Stochastic
state cost Total cost

Improvement compared
to LQR, %

Deterministic
control cost

Deterministic
state cost Total cost

Improvement compared
to deterministic, %

LQR —— — — —— 0.0000 0.3255 0.5096 0.8351 ——

Linear 0.3212 0.5119 0.8331 0.2468 0.3260 0.5088 0.8349 0.2177
Quadratic 0.3576 0.3832 0.7407 11.3010 0.3621 0.3801 0.7423 0.1292
Cubic 0.2937 0.4407 0.7344 12.0604 0.2980 0.4374 0.7354 0.2056
Quartic 0.2680 0.4620 0.7300 12.5860 0.2719 0.4582 0.7302 0.0217
Quintic 0.2928 0.4361 0.7288 12.7298 0.2973 0.4331 0.7304 0.2127
Sextic 0.3108 0.4173 0.7281 12.8174 0.3149 0.4136 0.7285 0.0605

Table 4 Mean cost comparison of stochastic controller to LQR and deterministic nonlinear controllers for ε � 0.2 using gain set A

Control order
Stochastic
control cost

Stochastic
state cost Total cost

Improvement compared
to LQR, %

Deterministic
control cost

Deterministic
state cost Total cost

Improvement compared
to deterministic, %

LQR —— —— — — 0.0000 0.3388 0.5201 0.8589 ——

Linear 0.3210 0.5313 0.8523 0.7710 0.3383 0.5191 0.8574 0.5891
Quadratic 0.3574 0.4022 0.7596 11.5600 0.3759 0.3898 0.7658 0.7977
Cubic 0.2927 0.4596 0.7523 12.4180 0.3105 0.4461 0.7565 0.5645
Quartic 0.2668 0.4810 0.7478 12.9431 0.2824 0.4655 0.7479 0.0174
Quintic 0.2919 0.4565 0.7483 12.8792 0.3084 0.4402 0.7487 0.0472
Sextic 0.3111 0.4373 0.7484 12.8635 0.3299 0.4245 0.7543 0.7804

Table 5 Mean cost comparison of stochastic controller to LQR and deterministic nonlinear controllers for ε � 0.01 using gain set B

Control order
Stochastic
control cost

Stochastic
state cost Total cost

Improvement compared
to LQR, %

Deterministic
control cost

Deterministic
state cost Total cost

Improvement compared
to deterministic, %

LQR —— —— — — 0.0000 0.0220 0.0221 0.0441 ——

Linear 0.0218 0.0221 0.0439 0.3583 0.0219 0.0220 0.0440 0.1910
Quadratic 0.0220 0.0220 0.0439 0.2468 0.0221 0.0219 0.0440 0.1251
Cubic 0.0216 0.0222 0.0439 0.4289 0.0217 0.0222 0.0439 0.1415
Quartic 0.0217 0.0223 0.0439 0.3385 0.0218 0.0222 0.0441 0.3230
Quintic 0.0217 0.0220 0.0438 0.6176 0.0219 0.0220 0.0439 0.1625
Sextic 0.0217 0.0221 0.0438 0.5825 0.0218 0.0220 0.0438 −0.0057

Table 6 Mean cost comparison of stochastic controller to LQR and deterministic nonlinear controllers for ε � 0.1 using gain set B

Control order
Stochastic
control cost

Stochastic
state cost Total cost

Improvement compared
to LQR, %

Deterministic
control cost

Deterministic
state cost Total cost

Improvement compared
to deterministic, %

LQR —— —— — — 0.0000 0.0334 0.0333 0.0667 ——

Linear 0.0206 0.0417 0.0624 6.5498 0.0339 0.0338 0.0676 7.8148
Quadratic 0.0205 0.0407 0.0613 8.1817 0.0334 0.0331 0.0666 7.9644
Cubic 0.0201 0.0410 0.0611 8.3855 0.0344 0.0347 0.0691 11.5576
Quartic 0.0203 0.0405 0.0608 8.9225 0.0353 0.0355 0.0708 14.1990
Quintic 0.0201 0.0402 0.0603 9.5799 0.0346 0.0346 0.0692 12.7832
Sextic 0.0199 0.0401 0.0600 10.0456 0.0328 0.0327 0.0655 8.3409
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The performance comparison of a linear deterministic controller
such as the LQR to a nonlinear stochastic controller can also be
seen in Figs. 4 and 5. Using gain set A, the cumulative distribution
function (CDF) in Fig. 4 shows that the sextic nonlinear controller
has a higher probability of achieving lower total cost compared to
its LQR counterpart under a standard deviation of 20%. This trend
can also be seen in Fig. 5 when the controllers are tuned using gain
set B.
The following figures depict the stabilization trajectories of 2000

particles starting at x � � 0 0 0 1 1 1 �T using two different
gains, where only the maximum and minimum trajectories are plot-
ted. Figure 6 shows the stabilization realizations due to control gain
set A, and Fig. 7 depicts the realizations due to control gain set B.

Figure 8 demonstrates the targeting ability of the stochastic nonlinear
control under a standarddeviationof 20%, starting from theorigin as the
initial condition. Comparing the choice of gain sets A and B, Figs. 6
and 7 demonstrate that the aggressive gains of set B introduce higher
variations among the realizations; i.e., the angular velocity trajectories
of Fig. 6 are mostly bounded within the range of	0.5, whereas Fig. 7
shows the angular velocity of some particles overshooting above five
using the gain set B. Although this may become a controller design
choice at the end, the control design engineermay study the uncertainty
induced by the controller of interest through such a multiplicative
structure where the uncertainty induced is proportional to the inputted
control energy.Another fact to point out here is that gain setA satisfied a
strong condition, meaning that there may exist other controllers with

Table 7 Mean cost comparison of stochastic controller to LQR and deterministic nonlinear controllers for ε � 0.2 using gain set B

Control order
Stochastic
control cost

Stochastic
state cost Total cost

Improvement compared
to LQR, %

Deterministic
control cost

Deterministic
state cost Total cost

Improvement compared
to deterministic, %

LQR —— —— —— 0.0000 0.2095 0.2065 0.4159 ——

Linear 0.0126 0.1165 0.1291 68.9626 4.8204 4.7460 9.5664 98.6505
Quadratic 0.0126 0.1149 0.1275 69.3395 0.1908 0.1879 0.3787 66.3203
Cubic 0.0120 0.1153 0.1273 69.3917 0.1677 0.1669 0.3346 61.9504
Quartic 0.0120 0.1156 0.1276 69.3310 1.9908 1.9607 3.9515 96.7717
Quintic 0.0124 0.1108 0.1232 70.3798 0.9506 0.9381 1.8887 93.4768
Sextic 0.0125 0.1101 0.1225 70.5386 0.1994 0.1971 0.3965 69.0942

Fig. 3 Bar chart comparisons of LQR versus stochastic control (on the left), and stochastic versus deterministic control (on the right), with gain set A
(top row) and gain set B (bottom row).

Fig. 4 Cumulative distribution function comparison of 2000 stabiliza-
tion realizations of sextic stochastic and LQR controllers when ε � 0.2,
using gain set A.

Fig. 5 Cumulative distribution function comparison of 2000 stabiliza-
tion realizations of sextic stochastic and LQR controllers when ε � 0.2,
using gain set B.
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largerK constants thatmay satisfy bound (40) anddemonstrate stability.
Control gain setB is an instanceof such controllers that exhibits stability
properties while violating condition ii of Proposition 1. Furthermore,
comparing the bandgap between the maximum and minimum trajecto-
ries of LQR and stochastic control, it is observed that the stochastic
control is better at keeping a narrower gap. This amounts to having
the probable trajectories of the system closer together when using the
stochastic control, hence reducing uncertainty.

Earlier, we chose theRiccati solutions to be bounded above by one to
ensure that the initial conditions arewithin the regionof attraction. In the
following Monte Carlo experiment, we demonstrate how this require-
ment could be mitigated through choosing the initial conditions, which
arewithin norm1of theorigin.Thedemonstrated comparison inTable 8
is for the initial condition of x � � 0 0 0 0.4 0.4 0.4 �T when
ε � 0.2. The simulations are for 2000particles, and thegains chosen for
the experiment are

Fig. 6 Stabilization trajectories of 100 realizations of sextic stochastic control (solid line) and LQR control (dashed line) for ε � 0.2 using gain set A.

Fig. 7 Stabilization trajectories of 100 realizations of sextic stochastic control (solid line) and LQR control (dashed line) for ε � 0.2 using gain set B.
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Q � 1000 ×

2
6666664

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

3
7777775
; R �

2
4 900 0 0

0 900 0

0 0 900

3
5

which, for ε � 0.2, yield kT k∞ � 0.0561, and a Riccati solution of

P�

2
666666666664

75.0511 0 0 72.4710 0 0

0 89.5490 0 0 85.9329 0

0 0 55.4350 0 0 52.7248

72.4710 0 0 71.2035 0 0

0 85.9329 0 0 84.1620 0

0 0 52.7248 0 0 51.4036

3
777777777775

Inspecting Table 8 reveals that even when the Riccati solution has
entries with magnitudes larger than one, choosing the initial con-
dition within norm 1 of the origin will help to retain stability and
optimality properties of the control. In fact, this is demonstration of a

special case where condition ii of Proposition 1 is satisfied but the
entries of P are larger than one. Although being limited to norm 1 of
the origin may be restrictive in many applications, this problem may
be alleviated by use of planningmethodswhere the controller is set to
achieve reference waypoints that are apart by norm 1 of their origin.
In this section, we have shown how tuning strategies for nonlinear

controllersmay help reduce uncertainty due to control input.We have
shown a case where a stochastic nonlinear controller outperforms its
deterministic counterpart, as well as another case where stochastic
and deterministic controllers perform similarly, with smaller dif-
ferences in the total cost optimized. The results of this section are
useful in understanding how control-induced noise is amplified or
reduced during a design process. Moreover, the numerical results
presented here could aid in the design of optimal feedback control-
lers, which are fault tolerant. In many applications, estimating ε can
help stochastic controllers attenuate uncertainty and noise, regardless
of the design gain choices.

VI. Conclusions

Thrust uncertainty causes state error, and accumulated state error is
detrimental to mission objectives. A stochastic control method has
been presented that on average will reduce and regulate the diffusion
of uncertainty and its effects in nonlinear systems. In the framework
outlined in this paper, the choice of control’s degree can be made
based on factors such as need for accuracy, computational resources
available, and the actuators themselves. Through this study, a control
designer may better understand how different gain-tuning regimes
could amplify or alleviate the thrust-induced uncertainty. In addition,
the presented experiments may give insight into how different orders
of nonlinearity in controllers improve the desired criteria. In general,
the disturbance suppression properties of the presented stochastic
controllers may increase the success chance of space missions.
Specifically, in operations where the control and state trajectory need
to be precise (i.e., during docking operations), torque disturbances
could be unwanted, or even hazardous. Moreover, in a hostile envi-
ronment such as space, consumption minimization of scarce resour-
ces such as power and propellants is highly desirable. The discussed
stochastic method considers the existing thrust disturbances and
satisfies the optimal criteria on average.

Fig. 8 Targeting control of 100 realizations of sextic stochastic control (solid line) and LQR control (dashed line) for ε � 0.2 using gain set A with

reference point x � � 0 0 0 1 1 1 �T.

Table 8 Mean cost comparison of stochastic controller to LQR
controller for ε � 0.2 when entries of P are large in magnitude

Control order Control cost State cost Total cost
Improvement compared

to LQR, %

LQR 24.9884 24.5791 49.5674 0.0000
Linear 9.6121 24.7539 34.3659 30.6683
Quadratic 9.3526 23.4565 32.8091 33.8092
Cubic 9.1873 23.3142 32.5015 34.4297
Quartic 9.0996 23.2447 32.3443 34.7469
Quintic 9.1491 23.3681 32.5172 34.3982
Sextic 9.2217 23.5727 32.7944 33.8389
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Appendix A: Higher Order Control

This appendix provides the higher-order control alongwith respec-
tive Hamiltonian equations. The following are the derived quartic
through sextic control equations:

k�4��x��−�R� ε2BTH�V�2��x��B�−1

×
�
�B�T ∂V

�5��x�
∂x

� ε2BTH�V�3��x��Bk�3��x�

� ε2BTH�V�4��x��Bk�2��x�� ε2BTH�V�5��x��BKx
�

(A1)

k�5��x��−�R� ε2BTH�V�2��x��B�−1
"
�B�T ∂V

�6��x�
∂x

� ε2BTH�V�3��x��Bk�4��x�� ε2BTH�V�4��x��Bk�3��x�

� ε2BTH�V�5��x��Bk�2��x�� ε2BTH�V�6��x��BKx
#

(A2)

k�6��x� � −�R� ε2BTH�V�2��x��B�−1
�
�B�T ∂V

�7��x�
∂x

� ε2BTH�V�3��x��Bk�5��x� � ε2BTH�V�4��x��Bk�4��x�
� ε2BTH�V�5��x��Bk�3��x� � ε2BTH�V�6��x��Bk�2��x�

� ε2BTH�V�7��x��BKx
�

(A3)

The following equations are the quintic through the septic Ham-
iltonian equations:

�Ax�T ∂V
�5��x�
∂x

�f�2�T �x�∂V
�4��x�
∂x

�f�3�T �x�∂V
�3��x�
∂x

��BKx�T ∂V
�5��x�
∂x

��Bk�2��x��T ∂V
�4��x�
∂x

��Bk�3��x��T ∂V
�3��x�
∂x

��Bk�4��x��T ∂V
�2��x�
∂x

�1

2
ε2�Kx�TBTH�V�5��x��BKx

�1

2
ε2�k�2��x��TBTH�V�3��x��Bk�2��x��ε2�Kx�TBTH�V�4��x��Bk�2��x�

�ε2�Kx�TBTH�V�3��x��Bk�3��x���Kx�T�R�ε2BTH�V2�x��B�k�4��x�
��k�2��x��T�R�ε2BTH�V2�x��B�k�3��x��r �5��x��0 (A4)

�Ax�T ∂V
�6��x�
∂x

�f�2�T �x�∂V
�5��x�
∂x

�f�3�T �x�∂V
�4��x�
∂x

��BKx�T ∂V
�6��x�
∂x

��Bk�2��x��T ∂V
�5��x�
∂x

��Bk�3��x��T ∂V
�4��x�
∂x

��Bk�4��x��T ∂V
�3��x�
∂x

��Bk�5��x��T ∂V
�2��x�
∂x

� 1

2
�Kx�T�ε2BTH�V�6��x��B�Kx

� 1

2
�k�2��x��T�ε2BTH�V�4��x��B�k�2��x�

� 1

2
�k�3��x��T�R� ε2BTH�V�2��x��B�k�3��x�

� �Kx�T�ε2BTH�V�5��x��B�k�2��x�
� ε2�Kx�T�BTH�V�4��x��B�k�3��x�
� �Kx�T�ε2BTH�V�3��x��B�k�4��x�
� �Kx�T�R� ε2BTH�V�2��x��B�k�5��x�
� �k�2��x��T�ε2BTH�V�3��x��B�k�3��x�
� �k�2��x��T�R� ε2BTH�V�2��x��B�k�4��x�� r �6��x� � 0 (A5)

�Ax�T ∂V
�7��x�
∂x

�f�2�T �x�∂V
�6��x�
∂x

�f�3�T �x�∂V
�5��x�
∂x

��BKx�T ∂V
�7��x�
∂x

��Bk�2��x��T ∂V
�6��x�
∂x

��Bk�3��x��T ∂V
�5��x�
∂x

��Bk�4��x��T ∂V
�4��x�
∂x

��Bk�5��x��T ∂V
�3��x�
∂x

��Bk�6��x��T ∂V
�2��x�
∂x

�1

2
�k�2��x��T�ε2BTH�V�5��x��B�Kx

�1

2
�k�2��x��T�ε2BTH�V�5��x��B�k�2��x�

�1

2
�k�3��x��T�ε2BTH�V�3��x��B�k�3��x�

��Kx�T�ε2BTH�V�6��x��B�k�2��x�
��Kx�T�ε2BTH�V�5��x��B�k�3��x�
��Kx�T�ε2BTH�V�4��x��B�k�4��x�
��Kx�T�ε2BTH�V�3��x��B�k�5��x�
��Kx�T�R�ε2BTH�V2�x��B�k�6��x�
��k�2��x��T�ε2BTH�V�4��x��B�k�3��x�
��k�2��x��T�ε2BTH�V�3��x��B�k�4��x�
��k�2��x��T�R�ε2BTH�V2�x��B�k�5��x�
��k�3��x��T�R�ε2BTH�V2�x��B�k�4��x�
�r �7��x��0 (A6)

Simplifying Eqs. (A4–A6) through substituting Eq. (46), the
quintic through the septic Hamiltonian equations become

�Ax�T ∂V
�5��x�
∂x

�f�2�T �x�∂V
�4��x�
∂x

�f�3�T �x�∂V
�3��x�
∂x

��BKx�T ∂V
�5��x�
∂x

�1

2
ε2�Kx�TBTH�V�5��x��B�Kx�−1

2
ε2�k�2��x��TBTH�V�3��x��Bk�2��x�

−�k�2��x��T�R�ε2BTH�V�2��x��B�k�3��x��r �5��x��0 (A7)

�Ax�T ∂V
�6��x�
∂x

� f�2�T �x� ∂V
�5��x�
∂x

� f�3�T �x� ∂V
�4��x�
∂x

��BKx�T ∂V
�6��x�
∂x

� 1

2
�Kx�T�ε2BTH�V�6��x��B��Kx�

−
1

2
�k�2��x��T�ε2BTH�V�4��x��B�k�2��x�

−
1

2
�k�3��x��T�R� ε2BTH�V�2��x��B�k�3��x�

− �k�2��x��Tε2BTH�V�3��x��Bk�3��x�
− �k�2��x��T�R� ε2BTH�V�2��x��B�k�4��x� � r �6��x� � 0 (A8)

�Ax�T ∂V
�7��x�
∂x

� f�2�T �x� ∂V
�6��x�
∂x

� f�3�T �x� ∂V
�5��x�
∂x

��BKx�T ∂V
�7��x�
∂x

� 1

2
�Kx�T�ε2BTH�V�7��x��B�Kx

−
1

2
�k�2��x��T�ε2BTH�V�5��x��B�k�2��x�

−
1

2
�k�3��x��T�ε2BTH�V�3��x��B�k�3��x�

− �k�3��x��T�ε2BTH�V�4��x��B�k�2��x�
− �k�3��x��T�R� ε2BTH�V�2��x��B�k�4��x�
− �k�4��x��T�ε2BTH�V�3��x��B�k�2��x�
− �k�5��x��T�R� ε2BTH�V�2��x��B�k�2��x� � r �7��x� � 0 (A9)
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Appendix B: Riccati Solution

Here, we provide the optimal solutions of the Riccati equations for
both gain sets A and B across different cases where ε � 0.01,
ε � 0.1, and ε � 0.2. We start by providing the optimal solution
for gain set A:

P�

2
666666666664

0.9500 0 0 0.4426 0 0

0 0.9606 0 0 0.4777 0

0 0 0.8128 0 0 0.4286

0.4426 0 0 0.1025 0 0

0 0.4777 0 0 0.0088 0

0 0 0.4286 0 0 0.6377

3
777777777775
; forε�0.01

P�

2
666666666664

0.9591 0 0 0.4463 0 0

0 0.9699 0 0 0.4817 0

0 0 0.8257 0 0 0.4343

0.4463 0 0 0.1043 0 0

0 0.4817 0 0 0.0108 0

0 0 0.4343 0 0 0.6407

3
777777777775
; forε�0.1

P�

2
666666666664

0.9875 0 0 0.4579 0 0

0 0.9987 0 0 0.4941 0

0 0 0.8667 0 0 0.4522

0.4579 0 0 0.1096 0 0

0 0.4941 0 0 0.0170 0

0 0 0.4521 0 0 0.6501

3
777777777775
; forε�0.2

The Riccati solutions for gain set B are also as follows:

P�

2
666666666664

0.0160 0 0 0.0159 0 0

0 0.0208 0 0 0.0206 0

0 0 0.0080 0 0 0.0080

0.0159 0 0 0.0158 0 0

0 0.0206 0 0 0.0205 0

0 0 0.0080 0 0 0.0079

3
777777777775
; for ε�0.01

P�

2
666666666664

0.0219 0 0 0.0217 0 0

0 0.0266 0 0 0.0262 0

0 0 0.0147 0 0 0.0145

0.0217 0 0 0.0215 0 0

0 0.0262 0 0 0.0261 0

0 0 0.0145 0 0 0.0144

3
777777777775
; for ε�0.1

P�

2
666666666664

0.0473 0 0 0.0463 0 0

0 0.0507 0 0 0.0495 0

0 0 0.0450 0 0 0.0431

0.0463 0 0 0.0458 0 0

0 0.0495 0 0 0.0489 0

0 0 0.0431 0 0 0.0422

3
777777777775
; for ε�0.2
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